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Fracture toughness and crack morphology 
in indentation fracture of brittle materials 
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Yegatagakuen-cho, Akita 010, Japan 

The relationship between the indentation fracture toughness, Kc, and the fractal dimension 
of the crack, D, has been examined on the indentation-fractured specimens of SiC and AIN 
ceramics, a soda-lime glass and a WC-8%Co hard metal. A theoretical analysis of the crack 
morphology based on a fractal geometry model was then made to correlate the fractal 
dimension of the crack, D, with the fracture toughness, K~c, in brittle materials. The fractal 
dimension of the indentation crack, D, was found to be in the range 1.024-1.145 in brittle 

materials in this study. The indentation fracture toughness, Kc, increased with increasing 
fractal dimension, D, of the crack in these materials. According to the present analysis, the 
fracture toughness, Kin, can be expressed as the following function of the fractal dimension 
of the crack, D, such that 

In K,c = 1/2{In[2FE/(1 - v2)] - ( D -  1)lnrL} 

where F is the work done in creating a unit crack surface, Eis Young's modulus, v is 
Poisson's ratio, and & is rm~n/rmax, the ratio of the lower limit, rm~n, to the upper limit, rmax, of the 
scale length, r, between which the crack exhibits a fractal nature (rm~n ~< r ~ rm~x). The 
experimental data (except for WC-8%Co hard metal) obtained in this study and by other 
investigators have been fitted to the above equation. The factors which affect the prediction 
of the value of Km from the above equatiori have been discussed. 

1. Introduction 
Since Mandelbrot et al. [1] revealed a relationship 
between the absorbed energy and the fractal dimen- 
sion of the fracture surface in the impact-reade d and 
fractured steels, the concept of the fractal geometry 
has been applied to problems in engineering materials 
[2-8]. Mecholsky et al. [-9] and Milman et al. [10] 
studied fracture surfaces of alumina and glass-ceram- 
ics and fitted the relation of the fractal dimension of 
the fracture surface, D'(1 ~< D' ~< 2) , and the critical 
stress intensity factor, Kio with the form 
Kic = Ko + Ea~/Z(D ' - 1) 1/2, where Ko is the value of 
Kic for the hypothetical material with the smooth 
fracture surface, E is Young's modulus, and ao is 
a parameter that has units of length. This equation 
indicates that the increase of the fraetal dimension of 
the fracture surface leads to the increase in the fracture 
toughness of the ceramic materials. From the 
engineering point of view, it is important to know 
the quantitative relationship between the crack 
morphology and the fracture toughness in brittle 
materials, because the crack deflection is one of the 
viable toughening mechanisms i n  brittle materials 
[11, 12]. 

The microstructures including dispersion of second- 
phase particles, grain-boundary configuration and 
grain size, generally affect the fraetal dimension of 

fracture surfaces, the mechanical properties and 
the fracture mechanisms in metallic materials 
(6, 13-16), although the effect of each microstructure 
prevails in a limited scale range, depending on the 
characteristic dimension of the microstructure 
(5, 6, 15, 16). Even in ceramics, as well as ductile metal- 
lic materials, the strength and toughness of materials 
is largely influenced by microstructures of the mater- 
ials [11,12]. Thus, it .is important to know what 
microstructure the measured fractal dimension of the 
cracks is associated with, because the crack morpho- 
logy estimated by the fractal dimension of the crack 
can also be affected by the size of the microstructures 
in brittle materials. 

Many experimental methods have been proposed 
for the estimation of the fracture toughness of ceram- 
ics [17, 18]. Among these, the indentation fracture (IF) 
method is known as the most convenient method 
and can estimate the fracture toughness of a small area 
in microstructures [17]. The indentation fracture 
toughness, Kc, is not exactly the plane-strain fracture 
toughness, K~c, and there are many difficulties 
about the determination of indentation crack type (i.e. 
median crack or Palmqvist crack) and KIC value in the 
IF method [19, 20], but there is a correlation between 
the Kc value and the Kic value in brittle materials 
E17,18]. 
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In this study, the indentation fracture toughness, K~, 
and the fractal dimension of the crack, D, were exam- 
ined on indentation-fractured specimens of SiC and 
A1N ceramics, a soda-l ime glass and a W C - 8 % C o  
hard metal. An analysis of the crack morphology was 
made on the basis of a fractal geometry model, and 
a theoretical equation was developed to correlate the 
fractal dimension of the crack, D, with the fracture 
toughness, Kin, in brittle materials. The experimental 
results obtained in this study and by Mecholsky et  al. 

[9] were then fitted to this equation. The factors which 
affect the prediction of the value of Kic from the 
theoretical equation were also discussed. Further, the 
correlations between the scale length of the fractal 
analysis, the size of microstructures such as grain 
diameter and crack length, were also examined. 

2. Experimental procedure 
A silicon carbide (Norton NC-430 SIC), a hot-pressed 
aluminium nitride (HP-A1N), a W C - 8 % C o  hard 
metal used in the previous study [21] and a commer-  
cial soda-l ime glass, were used for the indentation 
fracture experiments and the estimation of the fractal 
dimension of the indentation crack. Table I shows the 
physical and mechanical properties of the materials 
used in this study. The specimens of these materials 
were supplied in the form of rectangular bars of 3 m m  
x 5 m m  x 50 mm (HP-A1N) or 5 m m x  5 m m  x 50 mm 

(WC-8%Co),  or in the form of plates of 
20 m m  x 20 m m x  5 m m  (soda-lime glass) or 
10 m m  x 20 m m  x 5 m m  (Norton NC-430 SIC). The 
soda-l ime glass specimens were annealed for 1.8 ks at 
693 K. All the specimens-were mechanically polished 
with a diamond paste of 3 gm grain Size and finished 
with a diamond paste of 0.25 ~tm grain size. The speci- 
men of Nor ton  NC-430 SiC was electrolytically etched 
in 20g  K O H - 1 0 0 m l  water solution, that of 
W C - 8 % C o  was etched in 25 ml HNO3-75  ml HC1 
solution, and the specimen of HP-A1N was etched in 
10 ml acetic acid-10 ml H N O 3 - 1 0  ml water solution 
[24] before the indentation fracture experiments. 
Table I I  shows the average grain diameter or the 
average diameter of second-phase particles in the 
specimens of brittle materials. The average grain dia- 
meter of the specimens was estimated by Fullman's 
method [25]. 

The indentation fracture experiments were carried 
out using Vickers hardness testers under a load of 
4 9 0 N  (the specimen of W C - 8 % C o  hard metal) or 
9.8 N (other specimens). The indentation fracture 
toughness, Ko, value of the specimen was obtained as 
the one averaged over 10 datum points for 
WC-8  % C o  hard metal and as the value averaged over 
5 da tum points for other materials. The indentation 
crack observed in soda-l ime glass was found to be 
"median crack" by using an optical microscope, while 
"Palmqvist  crack" was known to occur in the indenta- 
tion fracture of W C - 8 % C o  hard metal [21]. Accord- 
ing to Nishida and Yasuda [17] and Niihara et  al. 

[18], the type of crack in the specimens of SiC and 
A1N ceramics were distinguished by examining the 
relationship between the indentation load and the 
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TABLE I The physical and mechanical properties of the materials 
used in this study 

Material Young's Fracture Densi ty  Bending 
modulus toughness g cm- 3 strength 
E (GPa) Krc(MPa m I/z) (MPa) 

Norton NC-430 
S i C  4 0 0  a 3 . 5  a 3.1 a 3 1 0  ~ 

(20~ 
H P - A 1 N  340 b 3.3 b - 
S o d a - l i m e  glass  6 8  b -- 2 . 5  b - 

WC-8%Cohard 
metal 590 ~ 13.3 d - - 

a Data reported by the manufacturers. 
b Data taken from [-22]. �9 
~ Young's modulus taken from [23]. 
a Km value obtained using SENB (single edge-notched bend) speci- 
mens in the previous study [21]. 

TABLE II The average grain diameter or the average diameter of 
second-phase particles in the specimens of brittle materials 

Material Average grain or particle diameter 
(grain or particle size range) (m) 

Norton NC-430 SiC 
HP-A1N 
WC-8%Co hard metal 
Soda-lime glass 

1.3x10 -5(3.7x10 7to8.6xlO -5 
6.0 • 10 -6  (1.1 x 10 ~6 to 1.1 x 10 -s 
2.1 x 10 -6 (WC particles)" 

aValue obtained in the previous study [21]. 

crack length in the loading range from 0.98-9.8 N, 
because a direct observation of indentation cracks was 
not made in these materials. It  was assumed from the 
experimental results that the median crack occurred in 
the indentation-fractured specimens of SiC and A1N 
ceramics. The indentation fracture toughness, Kc, was 
estimated from the following equation 

K c  = O.O13(E/H) t /2(p /c3 /2)  

= O . 0 2 E ~ 1 7 6 1 7 6  - l " s  (1) 

for median cracks in low-toughness materials [17, 26], 
and from 

Ko = O.O12(E/IT)2/5(HP/I)a/2 

= O . O l l E ~ 1 7 6 1 7 6  - ~  (2) 

for Palmqvist  cracks in high-toughness materials 
[17, 27], where c is the radius of median cracks, a is 
half of the diagonal length of indentation, H is the 
Vickers hardness (H = 0.464P/a2), E is Young's 
modulus and I is the crack length (1 -- c - a). 

The indentation cracks in specimens were observed 
with an optical microscope. Optical micrographs of 
the crack profiles were taken at the magnifications of 
x 50- x 1000 were used for the fractal analysis of the 
indentation crack. The coarse-graining method using 
line segments was employed in this study 1-28, 29]. The 
crack profile is approximated by line segments of the 
length r, as shown in Fig. 1. If N is the number  of these 
line segments, the value of N is generally correlated 
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Figure 1 Approximation of a crack profile by the coarse-graining 
method using line segments of length r (r', a fraction of line seg- 
ments). 

with the length of line segments, r, through the fractal 
dimension, D, such that 

N = N o r  -D  (3) 

where No is a constant. Therefore, the length o f  
a crack, L ,  in the fractal analysis is given by 

L = r N  = N o r  1 - ~  (4) 

However, a small fraction of line segments, r', is gener- 
ally retained when one approximates the crack profile 
by N line segments of arbitrary length, r (Fig. 1). In 
this study, the length of a crack, L, is determined 
owing to the following condition 

and 

if r' ~> 0.5r, then L = (N + 1)r (5a) 

if r' < 0.hr, then L = Nr (hb) 

The fractal dimension of an indentation crack, D, can 
be obtained by fitting the values of L and 7 to Equa- 
tion 4. 

3. Modelling of indentation cracks 
Let us consider a two-dimensional (through-thic k- 
ness) crack embedded in a material with the thickness, 
t (m), on the basis of the fractal geometry. The crack 
morphology is modelled as shown in Fig. 2 in this 
study. For  simplicity, it is assumed that the initiator of 
a crack is a straight line of the length l (m) and the 
generator of a crack has a concave line with an open 
angle of rc - 2~ at the first generation (Fig. 2a), al- 
though actual cracks have complicated geometry and 
have a fractal nature in statistical meaning. The same 
generator also leads to well-known Koch curve when 
r = re/6 (Fig. 2b) [30]. The modelled crack geometries 
in the following generations are shown in Fig. 2a. One 
can easily find the length of a line segment, r ("), and the 
total line length, L ("), at the nth generation (n t> 1) 
from the geometrical consideration. At the first gen- 
eration, these are given by 

r (1) =//(2cos qh) (m) (6a) 

L (1) = 2r (1) = / / c o s  d) (m) (6b) 

where 1/(2cos d~)< 1. At the second generation, 
r (2) and L (2) are expressed as 

r (2) = r(1)/(2cos qb) =/ / (2cos  qb) 2 (m) (7a) 

L (2) = 22r (2) =/ / (cos  qb) 2 (m) (7b) 

I ~ initiator 

~ Generator 
n = 1 ~ zTc/a 

Initiator 

r (2) 

r ( ~  ~ Generator 
n=2 n=l 

r (3) 

: 

(a) (b) 

Figure 2 Schematic illustration of the modelled crack: (a) modelled 
crack; (b) Koch curve. 

And r (m) and L (m) at the ruth generation are given by 

era) = lj(2cos d~) ~ (m) (8a) 

L (m) = 2mr (m) = / / (cos  ~)m (m) (8b) 

Therefore, the fractal dimension of the modelled crack 
(Fig. 2a), D(1 ~< D ~< 2), is expressed as 

D = In 2/ln (2cos qb) (9) 

and 

cos ~ = 2 l /D-  1 (10) 

Substituting Equation 10 into Equations 8a and b, 
one obtains 

r (m) = l 2 -mID (m)  ( l la)  

L (~) = 12 m(1 - l/D) (m) (1 lb) 

It is considered that a crack generally exhibits a fractal 
nature in a limited scale range between rmln and 
rma x (rmi n ~< r (ra) ~ 7max). In thisscale range, the max- 
imum crack length, L . . . .  can be measured at the lower 
limit value of r (m), rmi., and the minimum crack length, 
Lmln, c a n  be estimated at the upper limit value of 
7 (m), rma x. At the lower limit, one can find, by putting 
r try) = rmi. in Equation l la ,  that 

m = Dln(I /rm~.) / ln  2 (12) 

Substituting Equation 12 into Equation 1 lb, one ob- 
tains the maximum crack length, L (m) = L . . . .  and the 
maximum crack surface area, Sma x 

Lmax = l z r~i(.O -1)  (m) (13a) 

Smax = tLmax = tlOrmi w - l )  (m) 2 (13b) 

One can also find, by putting r (m) = rmax in Equation 
l l a  at the upper limit, that 

m = D ln(I/rm~x)/ln 2 (14) 

Substituting Equation 14 into Equation 1 lb, one ob- 
tains the minimum crack length, L (m) = Lmi~, and the 
minimum crack surface area, Smi. ,  in this scale range 

gmin l D - ( O - l )  = rm~x (m) (15a) 

Stain = tLmi  n = t l  D rm(x D -  1) (m)2  (15b) 
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The projected crack length, Lmi n = 1 is obtained by 
putting rmax = I in Equation 15a. Let us introduce the 
dimensionless quantities, namely, the normalized 
maximum surface area of the crack, S ' =  Smax/Smi,, 
and the normalized lower limit scale, rL = rmiffrm,~. 
The value of S' is obtained from Equation 13b and 
15b, such that 

S t = S m a x / S m i  n 

= (rmin/rm.x)-(D- l) 

= rs 1) (!6) 

Equation 16 represents a fractal nature of the crack 
surface. 

The energy release rate due to the crack formation, 
9, in which the fractal nature of a crack (or a crack 
surface) is taken into account, is given by the following 
equation 

g = 2FS'  

= 2 F r L  (D-a) ( Jm -2) (17) 

where F is the work done in creating a unit crack 
surface [31]. The plane strain fracture toughness, Kic,  
is expressed by the fracture mechanics theory as 

KIC = [gE/(1  - -  v2)]  1/2 (MPa m a/2) (18) 

where E is Young's modulus and v is Poisson's ratio. 
One can find from Equations 17 and 18 that 

Kic  = [2FS 'E/ (1  - v2)] 1/2 

= [2Fr / (~  1)E/(1 - -  V2)] 1/2(MPa m l/z) (19) 

Therefore, the logarithmic value of K~c is expressed as 

In K~c = 1/2 {(lnE2F E/(1 - v2)] - (D-l) Inr/.}(20) 

The same results of the calculation can be obtained if 
the crack shape was simulated to a Koch curve. 
Mecholsky et al. [9] and Milman e t a ! .  [10] studied 
fracture surfaces of alumina and glass-ceramics and 
fitted the relation between the fractal dimension of 
fracture surfaces, D', and the critical stress intensity 
factor, Kic, with the form KIC = Ko + Ea~/2(D ' - 1) 1/2 
(where K0 is the value of K~c for the hypothetical 
material with the smooth fracture surface and ao is 
a parameter that has unit of length). The present 
analysis gives a different relationship between Kic and 
D(D'), as shown in Equations 19 and 20. The toughen- 
ing effect arising from the fractal nature of a crack is 
represented in the second term [ - 0.5(D - 1) In rL] in 
Equation 20, where rL is r,, i , /r . . . .  a ratio of the lower 
limit, r,~i,, and the upper limit, r . . . .  of the scale length, 
r, between which a crack exhibits a fractal nature 
(rmin ~< r ~< rmax). The value of rml, is assumed to be of 
the order of the atomic spacing in brittle materials [5] 
and that of rm,~ is related to the crack length or the size 
of microstructures such as grain diameter, whereas 
these values should be determined in the fractal analy- 
sis of a crack. Therefore, any discrepancy between the 
measured K~c and the value determined from 
[2FE/(1 -- @)]1/2 is then due to the "fractal toughen- 
ing" ( - 0.5(D - 1) In rL in Equation 20). As indicated 
in Equation 20, a larger fractal toughening is expected 
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for a crack with a larger value of D in brittle materials, 
which has a fractal nature in a wider scale range of the 
fractal analysis (i.e. a smaller value of rE), because the 
value of - 0.51n rL represents the extent of fractal 
toughening. The value of F is also an important factor 
for the prediction of K~c in a given brittle material 
from Equation 19 or 20, because a larger value of 
F may also lead to a larger value of Kic. However, the 
value o f f  that should be used in the calculation is that 
corresponding simply to the creation of two flat surfa- 
ces without any microstructural toughening. 

4. Results and discussion 
4.1. M o r p h o l o g y  o f  i n d e n t a t i o n  cracks 
Figs 3 and 4 show examples of the microstructures in 
the indentation-fractured specimens of brittle mater- 
ials. Short indentation cracks can be seen at the cor- 
ners of indentation in ~the specimen of WC-8%Co 
hard metal (Fig. 3a). The shape of the indentation 
cracks in the specimen of WC-8%Co hard metal 
seems to be straight at low magnification, but it is 
considerably serrated at the higher magnification 
(Fig. 4). The indentation cracks were principally 
propagated along the interface between WC particles 
and cobalt-binder phase or through the grain bound- 
aries between WC particles in this specimen, while an 
extensive plastic deformation in the cobalt-phase was 
observed in the fractured SENB (single edge-notched 
bend) specimens of the same material [21]. The inden- 
tation cracks are short and serrated in the specimen of 
HP-A1N ceramics (Fig. 3b), because the cracks ex- 
tended not only through the grains but also along the 
grain boundaries. Long and almost straight indenta- 
tion cracks are visible in a large grain of SiC in the 
specimen of Norton NC-430 SiC ceramics (Fig. 3c), 
whereas short and serrated cracks were induced by 
indentation in the fine-grained region. Long and 
straight indentation cracks were also observed in the 
specimens of soda-lime glass. 

4.2. Fractal dimension of indentation crack 
Fig. 5 shows the relations between the length of the 
indentation crack, L, and the scale length of the fractal 
analysis, r, in the specimens of brittle materials. Solid 
symbols in the figure show the datum points which 
were fitted well to a single l o g x 0 L-  loglor line and 
were therefore used for the estimation of the fractal 
dimension of the indentation crack in the indentation- 
fractured specimens. The fractal dimension of the 
crack, D, was typically estimated in the length scale 
range of the analysis from 2.7 x 10 -7 to 1.1 x 10 -s m, 
and is shown in this figure. The crack length, L, 
decreases with increasing the scale of the analysis, r, in 
these specimens. The maximum value of r used for the 
estimation of the fractal dimension of the crack, D, is 
in the range from 5.5 x 10 .6 to 1.1 x 10-hm in the 
specimens of brittle materials. This value is about 
three times as much as the average diameter of WC 
particles (about 2.1 gm) in the specimen of WC-8%Co 
hard metal, and is a few times larger than or of the 
order of the average grain diameter in the specimens of 
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Figure 5 The relations between the length of the indentation crack, 
L, and the scale length of the fractal analysis, r, in the specimens of 
brittle materials: (*) coarse-grained region; (**) fine-grained region. 

Figure 3 Examples of the microstructures in the indentation-frac- 
tured Specimens of brittle materials. (a) WC~8 %Co hard metal, (b) 
HP-A1N ceramics, (c) Norton NC-430 SiC ceramics. 

HP-A1N and Norton NC-430 SiC ceramics (Table II). 
The fractal dimension of the indentation crack, D, was 
in the range from 1.024 (soda-lime glass) to 1.145 
(WC-8%Co hard metal). The data points become 
considerably scattered when the scale of the fractal 
analysis approaches the projected length of the inden- 
tation crack. For this reason, the value of the fractal 
dimension of the indentation crack was estimated 
using the data points of L corresponding to the values 
of r which are below about 30% of the projected crack 
length. Thus, the upper limit of the scale length, r . . . .  in 
the fractal analysis below which a crack exhibits 
a fractal nature, is related to the size of microstruc- 
tures such as grain diameter or the indentation crack 
size, and is considered to be in the range of about 
5 x 10 -6 to about 10-4m in these specimens. The 
value of rmin cannot be determined from the experi- 
mental results in this study. But, as described earlier, 
this value is assumed to.be the order of atomic spacing 
in brittle materials [5]. 

Figure 4 The optical micrograph of an indentation crack in a speci- 
men of WC-8%Co hard metal. 

4.3. R e l a t i o n s h i p  b e t w e e n  i n d e n t a t i o n  
f r a c t u r e  t o u g h n e s s  and  f r ac ta l  
d i m e n s i o n  o f  c rack  

Table III shows the values of the indentation fracture 
toughness, Kc, and the fractal dimension of the inden- 
tation crack, D, in the specimens of brittle materials 
obtained in this study. The indentation fracture 
toughness increases with increasing the fractal dimen- 
sion of the crack in these specimens. The Ko value 
(14.1MPam 1/2) is close to the Klc value (13.3 
MPam 1/2) in the WC-8%Co hard metal obtained in 
the previous study [-21] (Table I). The value of 
a soda-lime glass (0.604 MPam 1/2) is much the same 
as the Kic values given by Pampuch [321 
(0.2-0.7 MPa m 1/2) and is close to the value Km = 0.68 
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TABLE III  The values of the indentation fracture toughness, K~, 
and of the fractal dimension of the indentation crack, D, in the 
specimens of brittle materials 

Material Indentation Fractal dimen- Fractional 
fracture sion of inden- part of D, 
toughness, tation crack, D - 1 
K~ (MPa in 1/2) D 

Soda-lime glass 0.604 1.024 0.024 
Norton NC-430 1.68 ~ 1.048" 0.048 ~ 

SiC 3.60 b 1.092 b 0.092 b 
HP-AIn 1.94 1.076 0.076 
W ~ 8 % C o  14.1 1.145 0.145 
hard metal 

~Values of coarse-grained region. 
bValues of fine-grained region. 

Mpml/Z calculated by using the values of 
F = 1.75 J m  -2 and E = 62 GPa  [33]. In Norton NC- 
430 SiC ceramics, the Kc value in the large grains 
(1 .68MPam 1/2) is smaller than the Kic value 
(3.5 MPa m 1/2) reported by the manufacturer (Table I), 
but the Ko value in the fine-grained region 
(3.60 M P a m  ~/2) is close to this value. Unfortunately, 
no available data for the K~c value were reported by 
the manufacturer on the HP-A1N ceramics. 

Fig. 6 shows the relationship between the value ofln 
Kc and the fractional part of the fractal dimension of 
the crack, D- l ,  in brittle materials. The experimental 
data of the critical stress intensity factor, K~c, and the 
fractal dimension of the fracture surface, D', on 
alumina and glass-ceramics obtained by Mecholsky et 
al. [-9] are also shown in this figure. Their fractal data 
shown in this figure were estimated by the slit island 
method. It is assumed that both fracture surface and 
indentation crack surface have an identical value of 
fractal dimension in the same material (D' = D). Fur- 
ther, the value of r . . . .  below which the fracture surface 
shows a fractal nature, is considered to be less than 
1 0 - 4 m  in their alumina and glass-ceramics, because 
the maximum area of islands in the slit island method 
is less than 5• 1 0 - 9 m  z in their results. Although 
there is a scatter among the datum points, the rela- 
tionship between the value of In Ko and the fractal 
dimension, D, in brittle materials except W C - 8 % C o  
hard metal is fitted by the regression analysis to Equa- 
tion 20, and is given by 

l n K o = 0 . 2 1 8 + 4 . 2 7 ( D - 1 )  (7=0.7836)  (21) 

where 7 is a correlation factor. The datum points of 
W C - 8 % C o  with very large value of Ko, in which the 
effect of plastic deformation is not negligible [21], is 
therefore excluded from the regression analysis. The 
value of rL = 1.9 x 10 .4  can be obtained from Equa- 
tion 21. The value of rL is a ratio of the lower limit, 
rmln, to the upper limit, r . . . .  of the scale length of the 
fractal analysis, r, rmi,/r . . . .  between which the crack 
or the crack surface exhibits a fractal nature 
(rmin ~< r ~< rmax) . Therefore, one can estimate the 
value of rL~10-5  to 2 x 1 0  .4  by putting 
rmirl"~ 10 -9 m and rmax"~ 5 X 10 - 6  to 10 -4 m, because 

754 

3.0 

2.0 

1.0 e -  

- 1 . 0  

0 
WC - 8 %Co 

sic--  , 

AIN " /  ~. 

S o d a  - l i m e  g l a s s  
O 

i i T r r 1 

0.10 0.20 0.30 0.34 

D - 1  

Figure 6 The relationship between the value of In Ko and the 
fractional part of the fractal dimension of the crack or the fracture 
surface, D - 1, in the specimens of brittle materials; (*) coarse- 
grained region; (**) fine-grained region. (o) Indentation crack, (ZX) 
fracture surface [9]. 

the value of rmin is assumed to be of the order of 
atomic spacing and the value of rma x is related to the 
size of microstructures such as grain diameter or crack 
length. As described above, the value of r~,x is con- 
sidered to  be less than 10 .4  m for the fractal data of 
alumina and glass-ceramics [9]. The value of rL ob- 
tained from Equation 21 (1.9 x 10 -4) is close to the 
upper bound value (2x 10 -4) calculated using the 
values of rmin and r . . . .  while the value of Kc = 
1.24 MPa m 1/2 obtained by putting D = 0 in Equation 
21 is somewhat larger compared with the value of 
Klc for glass (0.2-0.7 MPa m 1/2) [32]. As described in 
Section 3, the value of rL represents the extent of 
~ toughening" due to the crack morphology, 
and a smaller value of rL may lead to a larger 
toughening in brittle materials. Further, the value of 
F is also an important factor and the value that 
should be used in Equation 20 or 19 is that corres- 
ponding simply to the creation of two flat surfaces 
without any microstructural toughening. Therefore, 
one can predict the fracture toughness of a given 
brittle material, K i o  from Equation 20 (or Equation 
19) by using the reliable data of the fractal dimension 
of the crack or the fracture surface, D, and the values 
of rL and F. 

5. Conclusions 
The relationship between the indentation fracture 
toughness, Ko, and the fractal dimension of the 
crack, D, were examined on the indentation-fractured 
specimens of SiC and A1N ceramics, a soda-lime 
glass and a W C-8 %Co  hard metal. The theoretical 
equation based on a fractal geometry model was 
developed to correlate the fractal dimension of 
the crack, D, with the fracture toughness, K~c, in 



brittle materials. The results obtained were 
summarized as follows. 

1. The fractal dimension of the indentation crack, 
D, was in the range from 1.024-1.145 in the specimens 
of brittle materials. The indentation fracture tough- 
ness, Kc, increased with increasing the fractal dimen- 
sion of the crack, D, in these specimens, although the 
specimen of W C - 8 % C o  hard metal exhibited very 
large value of Ko because of its plasticity. The fractal 
dimension of the crack was typically estimated in the 
scale range of the fractal analysis, r, from 2.7 x 10- 7 to 
1.1 x 10 .5 m, and the upper limit of the scale length, 
r . . . .  was related to the size of microstructures such as 
grain diameter or the crack length. 

2. The analytical result of the indentation crack on 
the basis of the fractal geometry showed the relation- 
ship between the fracture toughness, K~c, and the 
fractal dimension of the crack, D, such that 

In KlC = 1/2 {/nl-2F E/(1 - v2)] - (D -- 1)InrL} 

where F is the work done in simply creating a unit 
crack surface without any microstructural toughen- 
ing, E is Young's modulus, v is Poisson's ratio, and 
r L is rmin/r . . . .  a ratio of the lower limit, rmin, to the 
upper limit of the length scale, r, in the fractal analysis, 
between which a crack exhibits a fractal nature 
(rmi n ~< r ~< rmax) . The second term in the above equa- 
tion ( - 0.5(D-l) lnrL) represents the "fractal toughen- 
ing" due to the crack morphology. The value of rmi n is 
assumed to be of the order of atomic spacing in brittle 
materials and the value of/'max was related to the size 
of microstructures, such as grain diameter or the crack 
length. 

3. The experimental data (except for W C - 8 % C o  
hard metal) obtained in this- study and by Mecholsky 
et al. 1-93 fitted to the above equation, and the values of 
re = 1.9 x 10 - 4  and KIC = 1.24 M P a m  t/2 for D = 0 
were obtained. The value of rL was close to the upper 
bound of rL calculated from the values of rmi n and 
rm,x (about 10 .5 to 2 x  10-4), while the value of 
Kic for D = 0 was somewhat larger than the value of 
K~c for glass. One can predict the fracture toughness of 
a given brittle material from the above theoretical 
equation by using the reliable data of the fractal di- 
mension of the crack or the fracture surface, D, and the 
values of rL and F. 
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